Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật

Rate this post

Dưới đây là bài Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật, các bạn có thể tải về kham khảo miễn phí, đây là đề tài tiểu luận môn triết học được giới thiệu cho các bạn sinh viên đang tìm kiếm tài liệu, ngoài ra các bạn có thể kham khảo thêm các bài tiểu luận về Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật trên chuyên mục tiểu luận triết học.

Lưu ý: Trong quá trình viết tiểu luận Môn Triết Học nếu các bạn không có thời gian và cần hỗ trợ viết bài hoàn chỉnh, chất lượng tốt, các bạn có thể liên hệ với dịch vụ viết tiểu luận chất lượng qua Zalo: https://zalo.me/0932091562


I/ MỐI QUAN HỆ GIỮA TOÁN HỌC VÀ TRIẾT HỌC TRONG QUÁ TRÌNH HÌNH THÀNH VÀ PHÁT TRIỂN

          Ngay buổi bình minh của tư tưởng Tây phương, ích lợi thực tiễn của toán học đã được Herodotus(1) ghi nhận; ông cho rằng nguồn gốc của Hình học xuất phát từ những người đo đất ở Ai Cập. Thật vậy, chữ hình học theo nguyên ngữ có nghĩa là “trắc địa”. Nhưng các triết gia Hy Lạp, đặc biệt là Plato, đã tỏ ý khinh bỉ cái ý tưởng coi toán học có giá trị chỉ vì sự hữu dụng của nó trong việc khảo sát đất đai hoặc đo lường sự chuyển động của các thiên thể. Theo Plato, học toán là sự chuẩn bị lý tưởng cho tư tưởng triết lý, bởi vì nó đem trí tuệ vượt xa khỏi những sư vật thấy được và sờ được dể chú tâm vào những đối tượng trừu tượng thuần túy – những con số, những hình hình học, và những tỉ lệ.

Lập trường của Plato đã dẫn đến một kiểu bất đồng khác về bản chất của toán học, còn mãi cho tới ngày nay. Aristote đồng ý với Plato rằng toán học có giá trị như một tri thức, hoàn toàn không kể tới những ứng dụng thực tiễn, nhưng ông phản đối mạnh mẽ ý kiến nói toán học được coi là mẫu mực cho tất cả tri thức triết học. Ông lấy làm khó chịu thấy những học trò của Plato đồng nhất hóa toán học với triết học, và các sinh viên khoa triết sẽ không lắng nghe giảng viên nào không trình bày tư tưởng của mình bằng hình thức toán học. Theo Aristotle, mỗi khoa học có một phương pháp riêng thích hợp đối với đối tượng chính yếu của nó, và do đó, phương pháp toán học không nên áp dụng trong các khoa học khác.(Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật)

Sự bất đồng từ thời thượng cổ Hy Lạp này lại tiếp tục ở thời hiện đại trong các quan điểm đối lập nhau của Descartes(2)Kant. Là nhà toán học vĩ đại đồng thời là một triết gia, Descartes tuyên bố phương pháp toán học là con đường duy nhất dẫn đến tri thức, kể cả tri thức về vật lý vũ trụ. Đối với ông, cũng như đối với Newton và các nhà khoa học hiện đại vĩ đại khác, thế giới tự nhiên hình thành theo cách có thể được hiểu rõ nhất bằng phân tích toán học. Từ cái nhìn này, vũ trụ vật chất có một cơ cấu có thể diễn tả được bằng các thuật ngữ toán học.

Kant thừa nhận rằng những nguyên lý toán học có thể áp dụng vào việc nghiên cứu thế giới vật lý, và ông đề cao thiên tài của Newton(3). Nhưng ông cảnh báo các triết gia coi chừng bị lạc đường vì những thành công sáng chói của toán học trong một lĩnh vực mà ở đó chỉ cần tri thức đích xác về những quan hệ định lượng. Ông nói, chúng ta không thể có được một vài tri thức quan trọng nhất bằng cách đi từ những khái niệm và châm ngôn rõ ràng đến việc chứng minh những kết luận chính xác và chắc chắn. Điều này đặc biệt đúng đối với tri thức, nơi mà những phân biệt minh bạch chỉ đạt được ở cuối quá trình truy vấn, chứ không phải ở bước đầu quá trình này. Hơn nữa phương pháp toán học không đóng một vai trò gì trong đạo đức học, mà đối với Kant thì đạo đức học là khoa học triết lý hoàn thiện nhất.

Trong nhiều thế kỷ qua, toán học đã có những biến đổi to lớn nhưng cuộc tranh luận lâu đời này vẫn chưa ngã ngũ giữa các triết gia. Trong số các tư tưởng gia hiện đại, Bertrand Russell(4), chẳng hạn, tiêu biểu cho chủ trương dùng phương pháp toán học để tiếp cận mọi vấn đề, trong khi đó thì John Dewey(5) thích lối tiếp cận có tính chất thực chứng và sinh vật học hơn. Nhưng cho dù các triết gia có bất đồng thế nào đi nữa về giá trị của toán học như là một hình mẫu cho mọi loại tri thức, họ vẫn phải đồng ý với nhau một điều – toán học đem tới cho con người tri thức chắc chắn và xác minh thông qua sự suy luận nghiêm ngặt mà không cần đến sự hỗ trợ của thí nghiệm và nghiên cứu thực nghiệm

Tính chất chính xác, nghiêm ngặt và thuần lý của toán học đã đưa nó lên vị trí cao trong cái nhìn của các nhà giáo dục mọi thời đại. Như Plato khẳng định, toán học là môn học hướng dẫn lý trí trong việc nghiên cứu các đối tượng và những mối liên hệ trừu tượng. Nó cung cấp một bằng chứng về suy luận diễn dịch, là thứ suy luận đi từ những tiền đề sáng rõ đến những kết luận tất yếu.

Giá trị thực hành” cao nhất của toán học là trong việc phát triển trí tuệ con người. Có nhiều ứng dụng hằng ngày của toán học: đo đạc địa hình, thiết kế nhà cửa và quần áo, vạch quỹ đạo súng pháo binh… Nhưng ngay cả khi các máy tính điện tử và các phương tiện tối tân khác thay thế cho mọi tính toán của con người, lý trí chúng ta vẫn phải cần đến nguyên lý toán học để nắm được một phương diện thiết yếu của thế giới chúng ta đang sống.

Thời kỳ đầu, thời kỳ của toán học về các đại lượng bất biến, tức là các đại lượng lấy những giá trị cố định. Trước hết, toán học đã đóng góp vào sự hình thành cơ sở của lôgic hình thức, nhờ vậy tư duy có lập luận chính xác, chặt chẽ. Điều đó góp phần hình thành nên các nguyên tắc của tư duy khoa học. Thí dụ từ quan hệ a = b, b = c suy ra a = c. Tuy nhiên, khái niệm bằng nhau ở đây là bất biến, bất động, cố định.

Đối với các lĩnh vực tri thức  khác, ở thời kỳ này mới chỉ có cơ học và thiên văn học là tương đối phát triển. Toán học đã thông qua hai khoa học này góp phần vào cuộc cách mạng của Copecních thay hệ địa tâm bằng hệ nhật tâm. Sự phát triển của một thế giới quan mới gắn liền với cuộc cách mạng mà Copecních thực hiện đòi hỏi phải có một nền toán học mang những tư tưởng mới về chất ra đời (đó là toán học về các đại lượng biến đổi ở thời kỳ cổ điển). Tuy nhiên, ở thời kỳ này, các quan niệm của cơ học Niutơn chi phối hầu hết cách xem xét các sự vật, hiện tượng của thế giới xung quanh. Do cơ học Niutơn lấy số lượng bất biến, cố định của toán học làm chuẩn mực để tính toán khối lượng của nó, nên quan điểm này tạo cơ sở cho hình thành chủ nghĩa duy vật siêu hình máy móc. Thế giới quan của chủ nghĩa duy vật siêu hình máy móc đã ảnh hưởng lâu dài đến sự phát triển của toán học và các lĩnh vực khác của khoa học tự nhiên. Mặt khác, những thành tựu trong sự phát triển của số học, hình học cũng đã tạo ra mối liên hệ đầu tiên với những quan niệm của phép biện chứng ngây thơ cổ đại. Chẳng hạn, vấn đề quan hệ giữa số thực và số ảo, giữa vô hạn và hữu hạn… Như vậy ở thời kỳ này, mặc dù toán học có đóng góp vào sự hình thành và phát triển một số yếu tố biện chứng, song nhìn chung nó chỉ dừng lại ở việc góp phần hình thành và củng cố thế giới quan chủ nghĩa duy vật siêu hình máy móc. Do sự phát triển của thực tiễn và nhận thức, tất yếu dẫn tới sự ra đời của toán học về các đại lượng biến đổi.(Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật)

XEM THÊM ==> DỊCH VỤ VIẾT THUÊ TIỂU LUẬN

Ở thời kỳ này, các nhà kinh điển chú ý đến toán học, trước hết vì những tư tưởng về vận động, về các mối liên hệ, được phát triển trong toán học sớm hơn ở các khoa học tự nhiên thực nghiệm khác. F. Enghen đã đánh giá: “Đại lượng biến đổi của Đềcác đã đánh dấu một bước ngoặt trong toán học. Nhờ đó mà vận động và biện chứng đã đi vào toán học và phép tính vi phân và tích phân lập tức trở thành cần thiết.” . Thật vậy, trong lập luận của giải tínc toán và phép tính vi phân, người ta đã dùng các khái niệm như hàm số, giới hạn, liên tục, gián đoạn vô hạn, hữu hạn… Rõ ràng, toán học đã nghiên cứu về sự vận động, về các mối liên hệ ở những khía cạnh rất quan trọng. Có thể nói rằng, tư tưởng vận động, về liên hệ của toán học đã góp phần thay đổi về chất tư duy khoa học. Ở thời kỳ trước cổ điển, lôgic hình thức và cơ học Niuton chịu sự chi phối của các khái niệm, phạm trù bất biến cố định của toán học sơ cấp. Với tư tưởng vận động, liên hệ của toán học, người ta có một quan niệm mềm dẻo hơn đối với các hình thức của tư duy nói chung và của các phạm trù bất biến trong logic hình thức nói riêng. Ví dụ, để đo được độ dài của đường cong, ta phải xem đường cong là giới hạn của những đường thẳng…. Vì vậy, tư tưởng vận động, liên hệ của toán học là một trong các nguồn gốc đẻ ra tư duy biện chứng. Nó góp phần hình thành bước đầu cơ sở khoa học của logic biện chứng. Còn đối với khoa học tự nhiên thì sao?

Vào thời kỳ trước đó, do những điều kiện lịch sử nhất định, thế giới quan siêu hình máy móc đang thống trị trong khoa học tự nhiên, sự ra đời và phát triển tư tưởng vận động, liên hệ của toán học đã giáng một đòn mạnh mẽ vào thế giới quan siêu hình “mà điểm trung tâm là quan niệm về tính bất di bất dịch tuyệt đối của tự nhiên”. Thật vậy, sự ra đời của phép tính vi phân, giải tích toán học đã tạo cho các nhà khoa học một phương tiện mới trong nhận thức về các hiện tượng, sự vật, quá trình trong tự nhiên. Nhờ đó, người ta mới phát hiện ra định luật vạn vật hấp dẫn ở thế kỷ XVII, quy luật truyền sóng và truyền nhiệt ở thế kỷ XVIII. Sự ra đời thuyết tương đối của Anhxtanh ở thế kỷ XIX chính là nhờ sự phát triển từ trước của hình học phi Ơclít. Như vậy, toán học đã thông qua vật lý học, đóng góp vào cuộc cách mạng thế giới quan, thay chủ nghĩa duy vật siêu hình máy móc dựa trên cơ học Niutơn (với đặc điểm là khối lượng bất biến, không gian và thời gian tách biệt nhau) bằng chủ nghĩa duy vật biện chứng mà sự ra đời của thuyết tương đối Anhxtanh và những lý thuyết khoa học hiện đại khác là ví dụ (với đặc điểm là khối lượng, không gian và thời gian không tách rời nhau).

Một thành tựu quan trọng khác của toán học thời kỳ này là sự ra đời của tưởng thống kê – xác suất. Tư tưởng thống kê – xác suất khẳng định sự tồn tại khách quan của cái ngẫu nhiên. Thế giới không chỉ có những cái tất nhiên mà có cả những cái ngẫu nhiên. Ngẫu nhiên và tất nhiên liên hệ chặt chẽ và bổ sung cho nhau. Tư tưởng thống kê- xác suất cho ta một quan niệm mới mềm dẻo và chính xác hơn về sự phụ thuộc lẫn nhau, giữa các sự vật, hiện tượng, quá trình. Nó vượt hơn hẳn quan điểm quyết định luận chặt chẽ coi sự phụ thuộc liên hệ giữa các sự vật chỉ là đơn tại chặt chẽ và tính tất nhiên thống trị tuyệt đối trong giới tự nhiên. Sự tồn tại cái ngẫu nhiên bổ sung vào bức tranh khoa học chung về thế giới.

Như vậy, các tư tưởng vận động, liên hệ và thống kê – xác suất đã góp phần hình thành tư duy biện chứng và là cơ sở khoa học để luận chứng cho thế giới quan duy vật biện chứng. Tuy nhiên, toán học thời kỳ này cũng mang những hạn chế nhất định. Nó chưa đáp ứng được những nhu cầu của nền sản xuất từ cơ khí hoá chuyển sang nền sản xuất tự động hoá, của sự phát triển khoa học từ giai đoạn phân tích, thực nghiệm sang khoa học liên ngành tổng hợp ở trình độ lý thuyết. Những đòi hỏi ấy tất yếu dẫn toán học tới một thời kỳ phát triển mới – toán học nghiên cứu các cấu trúc và thuật toán.

Trong giai đoạn hiện đại, thành tựu nổi bật của toán học thời kỳ này là tư tưởng cấu trúc. Thực chất của tư tưởng này là cho phép ta tiếp cận một cách trừu tượng và khái quát các đối tượng có bản chất rất khác nhau để vạcg ra quy luật chung của chúng. Nói theo ngôn ngữ toán học, tức là có sự tương tự về cấu trúc hay sự đẳng cấu giữa các lĩnh vực có bản chất khác nhau. Có thể nói rằng tư tưởng cấu trúc là một trong những cơ sở lý luận cho sự ra đời của các khoa học tổng hợp như logic toán, điều khiển học, tin học, toán lý, toán sinh, toán kinh tế… Về phương diện thực tiễn, trên cơ sở sự tương tự về cấu trúc giữa các quá trình diễn ra trong giới tự nhiên vô sinh, sự sống và xã hội (tư duy) người ta đã chế tạo ra hệ thống máy tự động, hoạt động theo cơ chế tương tự bộ não và các giác quan con người.(Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật)

Như vậy cả về phương diện lý luận và thực tiễn, toán học hiện đại đóng vai trò nền tảng trong quá trình nhất thể hoá các khoa học. Hơn nữa, tư tưởng cấu trúc của toán học còn phản ánh sâu sắc sự thống nhất vật chất của thế giới. Sự thống nhất của toán học với thế giới quan triết học biểu hiện ở chỗ chúng xác nhận những tư tưởng cơ bản của chủ nghĩa duy vật: tư tưởng về sự thống nhất vật chất của thế giới và tính có thể nhận thức được của thế giới đó. Các khoa học khác như vật lý học, sinh học đã có những đóng góp quan trọng vào việc luận chứng cho sự thống nhất này. Có thể nói rằng cùng với sự phát triển của khoa học và thực tiễn các lý thuyết toán học ngày càng có khả năng đi sâu vào việc luận chứng cho tư tưởng về sự thống nhất vật chất của thế giới. Chẳng hạn, cùng một phương trình có thể diễn tả sự phân huỷ chất phóng xạ, sự sinh sản của vi khuẩn, sự tăng trưởng của nền kinh tế… Như vậy, tư tưởng cấu trúc của toán học hiện đại góp phần quan trọng vào sự nhận thức những cơ sở nền tảng của sự tổng hợp tri thức vốn chứa đựng nội dung thế giới quan, phương pháp luận sâu sắc. Đồng thời nó là một trong những cơ sở khoa học để luận chứng cho thế giới quan duy vật biện chứng về sự thống nhất vật chất của thế giới.

Những kết quả trên đây được củng cố vững chắc hơn khi xem xét ảnh hưởng của toán học đối với sự phát triển của khoa học tự nhiên hiện đại, đặc biệt đối với những ngành tiếp cận thế giới vi mô. Dựa vào sự tương tự về cấu trúc, người ta phát hiện ra mối liên hệ, quan hệ và sự thống nhất giữa các lý thuyết vật lý khác nhau. Đặc biệt, trên cơ sở những lý thuyết hình thức (trừu tượng) của toán học, người ta đã phát hiện ra những hạt mới trước khi chúng được phát hiện nhờ thực nghiệm. Điển hình là việc phát hiện ra pozitron trong cơ học lượng tử nhờ biểu diễn nó bằng một phương trình z căn bậc hai. Phương trình này lúc đầu cho ta căn cứ để dự đoán ngoài electron còn tồn tại một hạt khác có một số tính chất vừa giống điện tử nhưng lại vừa khác điện tử về dấu của điện tích. Đó là pozitron. Dự đoán này đã trở thành hiện thực. Về sau các phản hạt của phần lớn các hạt cũng được tìm ra bằng cách tương tự như pozitron. Khả năng vượt trước của toán học đã luận chứng, hoàn thiện, cụ thể hoá quan điểm của chủ nghĩa duy vật về điện tử là vô cùng vô tận. Các cuộc cách mạng trong hoá học (hoá học lượng tử), trong sinh học (lý thuyết di truyền), sinh học phân tử… đều dựa vào những thành tựu của toán học hiện đại. Đối với khoa học nhân văn, khả năng hình thành toán kinh tế, toán tâm lý, toán xã hội… sẽ góp phần củng cố thế giới quan duy vật biện chứng trong nhận thức nhân văn và xã hội.

Ở trên là ảnh hưởng của toán học dẫn đến hình thành và củng cố thế giới quan triết học. Ngược lại, triết học khoa học của toán học đã tác động tích cực đến sự phát triển của toán học, trước hết dẫn đến một số khuynh hướng nghiên cứu toán học. Ví dụ, khuynh hướng tìm kiếm các cấu trúc toán tương ứng với quan hệ không tuyển (vừa là… vừa là, chẳng hạn vừa là sóng, vừa là hạt) là một trong những đặc điểm nổi bật của các hệ thống phức tạp trong giới tự nhiên sống và xã hội. Quan điểm “tập hợp mờ” tức là tập hợp toán trong ranh giới giữa các phân tử không rõ ràng của lade, cho đến cái gọi là “toán học của sự phát triển” (khuynh hướng toán học về sự tiến hoá của sự sống). Tuy nhiên cũng cần phải thấy rằng chủ nghĩa duy tâm cũng đã lợi dụng những thành tựu của toán học hiện đại vì những mưu đồ đen tối của nó. Bên cạnh đó cũng có những sự giải thích lệch lạc của chủ nghĩa duy vật không biện chứng trong khi lĩnh hội, kiến giải và sử dụng các thành tựu toán học. Những sự giải thích như vậy chỉ nhằm mưu đồ phủ nhận triết học khoa học, xoá nhoà mối liên hệ, quan hệ giữa triết học khoa học với toán học hiện đại.

“Vật chất dùng để chỉ thực tại khách quan được đem lại cho con người trong cảm giác, được cảm giác của chúng ta chép lại, chụp lại, phản ánh và tồn tại không lệ thuộc vào cảm giác”. Các đối tượng toán học đều có đặc điểm như vậy. Thế giới toán học như thể một thế giới vật chất thu nhỏ mà trong có các đối tượng toán học như thể vật chất, còn các tính chất trong toán học như thể các hiện tượng. Nếu triết học nghiên cứu về sự vận động và phát triển của sự vật và hiện tượng thì toán học nghiên cứu về những đối tượng và các tính chất bất biến của nó. Điều đó cho thấy rằng toán học và triết học có mối liên hệ chặt chẽ với nhau.(Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật)

III/ GÓC NHÌN TRIẾT HỌC VỀ TOÁN HỌC.

1.Thế giới vật chất toán học.(Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật)

              1.1. “Vật chất có trước, ý thức có sau, vật chất quyết định ý thức”

Trong toán học, tất cả các đối tượng toán học đều là một thế giới vật chất sinh động. Từ những con số hay tập số, kí hiệu toán học, biểu thức toán học, phương trình toán học… đều là một dạng vật chất. Chúng có trước và tồn tại khách quan, không phụ thuộc vào cảm giác con người. Và vì vậy, chúng sẽ bị chi phối bởi cac quy luật khách quan, chẳng hạn: hằng đẳng thức, nguyên lý Đi-rich-lê về những chú thỏ và những chiếc lồng, quy luật tương ứng 1-1 của hàm số, các bất đẳng thức Cô-si, Bu-nhi-a-côp-xki… Tất cả các đối tượng toán học đều có trước những người khám phá ra nó.  Tất cả đã vốn đều có trong thực tiễn. Thật vậy, ta có:

Những con số hay tập số: Một đội tuyển bóng đá ra sân gồm 11 cầu thủ, lớp học gồm 30 học sinh, một ta bút chì có 12 cậy bút, … Những con số 11, 30, 12 là ngẫu nhiên khách quan.  Nếu con người không khám phá thì tự bản thân nó vẫn mang bản chất là 11, 30 và 12, chỉ có điều nó chưa được gán cái tên là “11”, “30” và “12”… Như vậy, trước khi con người tìm ra số, thì bản thân nó vẫn tồn tại một cách khách quan. Việc con người khám phá chỉ mang tính chất định dạng lại.

Kí hiệu toán học: Các kí hiệu toán học như “+”, “-”, “x”, “/” (cộng, trừ, nhân, chia), hay phép giao, phép hội, rồi tam giác, rồi hình lập phương… tất cả đều xuất phát từ thực tế. Đơn cử như phép cộng. Nó có thể xuất phát từ nhiều bài toán thực tiễn cơ bản. Đó là việc thêm một lượng đối tượng (người, đồ dùng, tiền ,…) vào một lượng đối tượng đã có trước đó để thu được một lượng lớn hơn. Hay các hình như tam giác, lập phương… tồn tại rất nhiều trong cuộc sống cho dù con người có khám phá ra hay không, nó mãi mãi vẫn vậy(Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật)

Biểu thức toán học: Các biểu thức toán học như công thức toán học, phương  trình toán học là biểu thị mối liên hệ giữa các đối tượng vật chất toán học như các con số hay kí hiệu toán học. Nó cũng là dạng vật chất, xuất phát từ trong thực tiễn, đó là từ những tình huống, những bài toán cần tìm một đối tượng nào đó. Đơn cử như tình huống một thửa ruộng hình chữ nhật có chu vi là 30m, diện tích 200m2. Yêu cầu đặt ra là tính các cạnh của nó.  Khi đó ta dễ dàng có các phương trình toán học a + b = 30 và a.b = 200.  Với a là chiều dài, b là chiều rộng…

Các quy luật toán học: Luật tương ứng 1-1 cho ta khái niệm về hàm số. Điều này thể hiện ở thực tiễn một cách rộng rãi. Như mỗi đồ dùng, vật dụng có một cái tên. Mỗi con vật gắn liền với một cái tên. Mỗi người có một số tiền lương nhất định… Tất cả đều xuất phát từ thực tiễn.

1.2. Vật chất tồn tại theo quy luật khách quan.

Từ  việc nghiên cứu thực tiễn, con người đã khái quát hóa nên các đối tượng toán học ấy. Các đối tượng này được con người định dạng lại bằng việc gán cho nó một cái tên như là “hàm số – đồ thị”, “tập số”, “phương trình”, “hình lập phương”… Tất cả những đối tượng đó đúng như triết học duy vật biện chứng khẳng định tính chất “tồn tại khách quan, độc lập với ý thức của con người, không ai tạo ra và không ai có thể tiêu diệt được”. Theo quan điểm triết học Mác – xít, thông qua hoạt động của mình, con người tác động vào giới tự nhiên tạo nên sự ảnh hưởng đến sự tồn tại và phát triển của giới tự nhiên. Tuy thế, sự tồn tại và phát triển của giới tự nhiên vẫn tuân theo những quy luật riêng của chúng, con người không thể quyết định hoặc thay đổi những quy luật đó theo ý muốn chủ quan của mình”. Trong toán học, từ những hoạt động toán học (khám phá các đối tượng, chứng minh các tính chất toán học) đã làm cho “thế giới toán học” phát triển ngày càng nâng cao, nhưng toán học vẫn có sự phát triển theo quy luật chung khách quan không phụ thuộc vào con người, con người không thể thay đổi được các quy luật đó. Nguyên lý Đi-rich-lê vẫn luôn đúng dù con người có tác động đên hay không. Hay như trong hình học phẳng  “2 đường thẳng phân biệt cùng song song với một đường thẳng thứ 3 thì chúng song song với nhau” thì mãi mãi là như vậy… Cho dù “con người không thể tạo ra thế giới tự nhiên, nhưng có thể nhận thức được thế giới tự nhiên và cải tạo được thế giới tự nhiên”. Tất cả các đối tượng toán học đều tuân theo quy luật riêng của nó. Tuy nhiên con người có khả năng nhận thức được, tác động vào nó và khám phá ra nó, nhằm phục vụ cho mục đích con người. Việc nhận thức về toán học cũng đã làm cho con người hiểu rõ hơn về thế giới vật chất, nâng cao thế giới quan và phương pháp luận biện chứng của con người.

2.Sự vận động và phát triển của thế giới vật chất toán học.

Thế giới vật chất toán học luôn luôn vận động và phát triển. Sự vận động và phát triển đó thể hiện là sự vận động trong nội tại toán học. Chẳng hạn như:

Tập số: Số tự nhiên => số nguyên => số hữu tỉ => số thực => số phức…

Các phép toán: phép cộng => phép nhân => lũy thừa => logarit…

Phép biến hình: Phép tịnh tiến đồ thị, phép biến hình trong hình học, quỹ tích và tập hợp điểm, họ đường cong chứa tham số, giới hạn hàm số… 
          Sự vận động còn thể hiện ở phương trình và bất phương trình chứa tham số, khi tham số thay đổi phương trình và bất phương trình thay đổi… Hay ban đầu con người ta chỉ biết giải phương trình bậc nhất, nhưng sau đó con người đã biết giải phương trình bậc hai, bậc ba, bậc bốn và thậm chí còn chứng minh được phương trình bậc năm không có phương pháp giải tổng quát. (Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật)

Sự vận động phát triển đó còn là sự vận động và phát triển của các kiến thức toán học nói chung. Tất cả các kiến thức toán học phát triển hàng ngày hay ngày thậm chí hàng giờ. Không chỉ lý thuyết toán phát triển, mà công cụ giải toán cũng phát triển. Xin đơn cử:

Nếu như hình học ban đầu chỉ giải theo phương pháp tổng hợp đơn thuần thông qua tính toán và trực quan thì sau đó đã có những công cụ mới giải toán mạnh hơn, phù hợp hơn như phương pháp vectơ, phương pháp quỹ tích… 

Hay như trong vẽ đồ thị, từ việc dùng công cụ đại số xác định  điểm để vẽ đồ thị cho đến công cụ giải tích (dùng bảng biến thiên) thông qua các tính chất đặc trưng như tính tuần hoàn, tính đối xứng, tính đồng biến, nghịch biến… 

Rồi với các bài toán đố, chỉ với những phép toán thông thường đa phần là tính nhẩm, hay là mò mẫm… thì rõ ràng việc giải một số bài toán này bất tiện và không nhanh chóng hơn bằng phương pháp dùng phương trình để giải…

Toán học vận động theo cách thức cái mới ra đời thay thế cái cũ, cái tiến bộ ra đời thay thế cái lạc hậu. Nhưng sự thay thế đó không phải là phủ nhận hoàn toàn, mà là trên cơ sở kế thừa cái cũ. Điều này thể hiện rõ bản chất triết học trong toán học. Chẳng hạn, khi giải phương trình bậc 2 một ẩn, ta đã xây dưng được phương pháp cụ thể. Cũng từ đó một số phương trình bậc ba, bậc 4 dạng đặc biệt cũng được giải bằng cách đưa về phương trình bậc hai. Không chỉ thế, nhờ việc xét trường hợp vô nghiệm trên trường số thực khi delta âm, ngươi ta còn xây dựng lên trường số phức ơi nhiều tính chất và ứng dụng đặc biệt. Hay thay vì xét trường hợp hữu hạn riêng lẻ, người ta đã xây dựng nên trường hợp tổng quát thông qua phép quy nạp toán học…Và khi phương pháp toán học đã phát triển, người ta có thể kết hợp cả nhiều phương pháp như phương pháp vectơ, phương pháp giải tích, hay phương pháp đại số…

 Tất cả sự phát triển đó là tất yếu trong toán học, và vì sự tất yếu đó, nên khi xem xét kiến thức toán học phải ủng hộ cái mới, tránh thái độ bảo thủ. Sự phát triển và vận động đó cũng gắn liền với sự phát triển và vận động của tư duy các nhà toán học. Ngày nay, toán học phát triển một cách vượt bậc với những tính chất đa dạng và phong phú. Sự vận động đó đem lại cho con người nhiều ứng dụng, không chỉ đơn thuần là trong nội tại toán học mà còn trong các khoa học khác như tin học, hóa học, vật lý, sinh học, y học… Toán học ngày càng phát triển thì khả năng ứng dụng của nó vào thực tiễn ngày càng cao, càng hiệu quả.

3.Nguồn gốc vận động và phát triển của thế giới vật chất toán học.

Nếu như triết học Mác-Lênin khẳng định thế giới vật chất vận động và phát triển theo quy luật mâu thuẫn thì trong toán học điều này thể hiện rất rõ. Mâu thuẫn là một chỉnh thể, trong đó có hai mặt đối lập vừa thống nhất với nhau, vừa đấu tranh với nhau. Trong toán học, các mặt đối lập thể hiện trong nhiều nội dung. Chẳng hạn, trong tập số tự nhiên, ta thấy số chẵn và lẻ với các tính chất trái ngược nhau, nhưng chúng lại thống nhất để tạo nên chỉnh thể tập các số tự nhiên. Hay số âm và số dương (trong chỉnh thể số thực). Rồi tính đồng biến, nghịch biến (trong chỉnh thể hàm số ); mệnh đề và phủ định của mệnh đề đó (trong chỉnh thể mệnh đề); tập hợp và phần bù của tập hợp; không gian và không gian đối ngẫu; bằng và khác, số đúng và số gần đúng; ngoại tiếp và nội tiếp…Những mặt đối lập liên hệ gắn bó chặt chẽ với nhau, làm tiền đề tồn tại cho nhau mà trong triết học gọi đó là sự thống nhất của các mặt đối lập. Thật vậy, số thực dương và số thực âm không tồn tại riêng lẻ, nếu không có số thực dương thì số thực âm cũng không có đồng thời không tồn tại tập số thực và ngược lại. Hay đối với số chẵn và số lẻ trong tập số tự nhiên, nếu số chẵn chia hết cho 2 (dạng 2k với k tự nhiên) thì số lẻ chia 2 dư 1 (dạng 2k+1). Rõ ràng nếu không có số chẵn thì không có số lẻ và sẽ không có tập số tự nhiên. Do đó chúng vẫn tồn tại đối lập mà thống nhất với nhau để hình thành chỉnh thể tập số tự nhiên…Cũng từ mâu thuẫn giữa các mặt đối lập này (quan hệ chia hết, không chia hết chẳng hạn) người ta đã phát triển thành ra tập số hữu tỷ với nhiều ứng dụng. Rồi cũng từ số hữu tỷ ta xây dựng nên số vô tỷ, để tạo nên chỉnh thể tập số thực. Cũng từ tập số thực, là động lực để xây dựng số ảo tạo nên trường số phức… Tất cả điều thể hiện: mâu thuẫn là động lực của sự phát triển.(Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật)

XEM THÊM ==> CÁCH LÀM TIỂU LUẬN TRIẾT HỌC ĐIỂM CAO

 4.Cách thức vận động, phát triển của thế giới vật chất toán học.

Thế giới vật chất toán học vận động theo nhiều quy luật. Xong, thể hiện rõ nét với quy luật lượng chất. Triết học Mác-xit khẳng định: Sự biến đổi về chất dẫn đến sự biến đổi về lượng, chất mới sinh ra bao hàm một lượng mới tương ứng. Ví dụ, khi xét một tam giác thường, có ba cạnh, có thể bằng nhau hoặc khác nhau, nhưng một tam giác cân chắc chắn là có hai cạnh bằng nhau và khác cạnh còn lại, đến với tam giác đều, rõ ràng 3 cạnh bằng nhau. Hay một tứ giác có bốn cạnh có thể bằng nhau hoặc khác nhau nhưng một hình bình hành thì có 2 cặp cạnh bằng nhau từng đôi một, một hình vuông thì có 4 cạnh bằng nhau. Đối với biểu thức S=a+b, khi S thay đổi chắc chắn a hoặc b thay đổi. Rồi xét một phương trình đa thức. Nếu nó là phương trình bậc hai thì có tính chất về nghiệm là vô nghiệm, có nghiệm kép, có hai nghiệm phân biệt; còn nếu nó là phương trình bậc ba thì có tính chất về nghiệm là có nghiệm, có hai nghiệm, có ba nghiệm phân biệt …

5.Phép duy vật biện chứng trong toán học.

Trong triết học, phương pháp luận biện chứng là xem xét sự vật, hiện tượng trong sự ràng buộc lẫn nhau giữa chúng, trong sự vận động và phát triển không ngừng của chúng. Tất cả các chứng minh toán học đều là phương pháp luận biện chứng. Khi giải quyết một vấn đề toán học, các đối tượng toán học được nhà toán học xem xét dựa trên sự ràng buộc giữa chúng, và trong sự vận động không ngừng. Từ đó tìm ra quy luật chi phối chúng để tổng kết nên thành quả toán học. Xin đề cập ví dụ là giải bài toán tìm hai số nguyên dương x và y thỏa x + y = 3. Rõ ràng biểu thức trên đã cho thấy mối liên hệ ràng buộc giữa x và y. Và chúng còn mỗi quan hệ nữa chính là đều là các số nguyên dương, tức là x và y đều không nhỏ hơn 1 và không lớn hơn 3. Từ đó, x và y chỉ có thể bằng 1 hoặc 2. Kiểm nghiêm thấy x=1, y=2 hoặc x=2, y=1 là hai căp nghiệm. Một ví dụ đơn giản thôi, nhung ta thấy rằng, khi làm việc với các đối tượng toán học, chúng ta cần phải xét chúng trong sư ràng buộc, trong sự vận động và phát triển của chúng.

Tất cả các đối tượng trong toán học đều có mối quan hệ biện chứng. Cụ thể, tất cả các công thức trong toán học đều thể hiện mối quan hệ biện chứng.
Như xét định lý “Hai góc đối đỉnh thì bằng nhau”: mối quan hệ biện chứng giữa 2 góc đối đỉnh; “hai tam giác có 2 cặp góc băng nhau thi đồng dạng”: mối quan hệ biện chứng giữa 2 tam giác, giữa các goc trong 1 tam giác. Nói rộng ra, tất cả các định lý, tính chất đều thể hiện mối quan hệ biện chứng trong đó.
Ta còn có thể kể đến mối quan hệ biện chứng giữa biến số và hàm số, giữa các mệnh đề với quan hệ suy ra hay tương đương.. Trong triết học “thế giới vật chất có trước, phép biện chứng phản ánh nó là cái có sau. Thế giới vật chất luôn vận động và phát triển theo những quy luật khách quan”. Đúng như vậy, thế giới toán học (bao gồm tất cả đối tượng và tính chất các đối tượng) là cái có trước còn tất cả các chứng minh toán học là cái có sau. Con người có khả năng nhận thức được các quy luật của các đối tượng đó. Sự nhận thức này là từ phương pháp luận biện chứng đã nói ở trên. Như vậy, toán học và phương pháp luận biện chứng có mối quan hệ không thể tách rời nhau, mà gắn bó chặt chẽ với nhau. Nội dung này sẽ được cụ thể hóa bằng phần trọng tâm của chuyên đề. Đó chính là nội dung của chương 2 mà ta sẽ làm rõ sau đây.(Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật)

IV/VẬN DỤNG PHÉP BIỆN CHỨNG DUY VẬT VÀO SÁNG TẠO TOÁN HỌC.

          Toán học là một khoa học cụ thể, có quan hệ chặt chẽ với triết học. Trong các quy luật khách quan về thế giới vật chất, toán học cũng vận động theo các quy luật khách quan đó. Là người nghiên cứu toán học, ta hiểu rằng, bất cứ một lời giải cho một bài toán cụ thể nào đều dựa vào mối quan hệ giữa các yếu tố trong giả thiết (đề bài). Nói rộng hơn, đó là sự thể hiện của mối quan hệ biện chứng giữa các yếu tố toán học. Trên cơ sở đó, xuất phát từ việc nghiên cứu kĩ về phép biện chứng duy vật, ta sẽ thu được những kết quả thú vị trong quá trình nghiên cứu toán học. Trong phần này, xin đưa ra quan điểm về việc vận dụng phép biện chứng duy vật vào sáng tạo toán học bằng việc xây dựng kiến thức về cách thức tiếp cận thông qua các vấn đề cụ thể. Từ đó, sẽ là cơ sở để chúng ta mở rộng vấn đề hơn trong những đề tài tương tự.

1.Vận dụng phép biện chứng duy vật với cặp phạm trù “cái chung – cái riêng”.

        Hẳn chúng ta đã biết định lý Pi-ta-go quen thuộc trong chương trình hình học lớp 8: trong một tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương hai cạnh góc vuông. Nếu học xong nội dung của định lý này, chúng ta hiểu được định lý, có thể áp dụng vào giải một số bài toán liên quan đến công thức trong định lý thì quả thật chưa đủ. Bởi lẽ, đây là kiến thức tương đối thú vị về tam giác vuông, từ công thức của định lý này, ta có thể tìm ra các bộ số Pi-ta-go chẳng hạn bộ số (3,4,5) hay bộ số (6,8,10)…(vì 32+42=52; 62+82=102), hay có thể áp dụng kết hợp với tính đồng dạng để đo chiều cao của cây, của các công trình…còn rất nhiều ứng dụng vô cùng thú vị nữa. Tôi đặt ra vấn đề này bởi vì là một người học toán, nghiên cứu toán, nếu như sau mỗi một bài toán cụ thể nào đó, ta dừng lại và chấp nhận nó như một chân lý khách quan và là một thành quả của bản thân thì chưa đủ. Như vậy chúng ta chỉ tiếp cận được những cái rất khô và sơ cứng mà lâu nay ta nhầm tưởng và mặc định tính chất khô khan cho toán học. Thực ra, ta sẽ thấy toán học rất linh động, uyển chuyển, mới lạ, hào hứng và thú vị. Để có được chất nghệ thuật trong toán học, với mỗi vấn đề toán học, ta cần tìm hiểu nó một cách rõ ràng. Đồng thời đừng quên mở rộng vấn đề cho bài toán. Việc mở rộng này hoàn toàn không khó khăn. Chỉ bằng cách đặt những câu hỏi: Tại sao? Vì sao? Thiếu cái này thì sẽ thế nào? Thêm cái kia thì sẽ ra sao? Hay: Đối với vấn đề tương tự, liệu ta có thu được kiến thức tương tự không?…Và cuối cùng không quên đặt câu hỏi: Thực tế ứng dụng của bài toán là gì? Việc trả lời các câu hỏi trên không hề dễ, nhưng cũng chẳng khó. Điều quan trong ở đây chính là cách thức tiếp cận như thế nào? Và thực hiện nó ra sao? Đó chính là nội dung của việc ứng dụng phép biện chứng duy vật vào toán học mà ta sẽ làm rõ. Ta lần lượt đi vào các bài toán và đưa ra cách thức sáng tạo trong mỗi hướng tiếp cận để thu được những kết quả mới thú vị. Cái mà chúng ta thường gọi là sáng tạo toán học.(Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật)

Bài toán 1: Từ định lý Pi-ta-go đến định lý Hàm số cosin trong tam giác.

Bài toán 2: Từ định lí Pi-ta-go đến hệ thức lượng trong tứ giác.

Bài toán 3: Từ định lý Pi-ta-go đến định lý diện tích các mặt trong tam diện vuông. 

2.Vận dụng phép biện chứng duy vật với quy luật “lượng -chất”

          Ở kiến thức bậc trung học, hẳn chúng ta rõ ràng bài toán cơ bản: “Trong mặt phẳng cho hai điểm A, B nằm khác phía nhau so với đường thẳng d. Tìm điểm M trên d sao cho MA + MB nhỏ nhất”. Đây là bài toán khá đơn giản. Vì nó dựa vào kết luận quen thuộc:

 “Trong một tam giác, tổng hai

cạnh bao giờ cũng lớn hơn cạnh còn lại”.

Vậy đáp số chính là: điểm M cần tìm

là giao điểm của ABd (hình 2.1).

Thật thế, với bất kì điểm M trên d

ta đều có .

Thế nên, MA + MB  nhỏ nhất khi có dấu bằng xảy ra, tức là A,M, B  thẳng hàng. Khi đó M là giao của ABd. Nếu xét bài toán trên như là một sự vật hiện tượng, thì ta thấy có các yếu tố về lượng và chất trong đó như: các điểm A, B, M, khoảng cách MA, MB, MA + MB và đường thẳng d (yếu tố lượng); A, B nằm khác phía, M thuộc d , MA + MB nhỏ nhất (yếu tố chất). Tuy nhiên, sự phân biệt chỉ mang tính chất tương đối. Bởi lẽ, xét “tính khác phía” của A, B là chất đối với hai điểm này, xong cũng có thể là lượng của cả bài toán. Mặc dù vậy, điều này không quan trọng lắm. Vì ta tập chung vào sự phân tích cụ thể nào đó để tìm ra hướng phát triển mới của bài toán. Đó mới là điều quan trọng. Ta thấy rằng, yếu tố quan trọng của bài toán tập trung chủ yếu vào tính chất “cùng phía” hay “khác phía” của A, B và sự “nhỏ nhất của tổng MA +MB. Các yếu tố khác trong bài toán là “bình thường”. Nếu xét như trên, thì khi thay đổi tính chất “cùng phía” bởi “khác phía” thì rõ ràng tính chất bài toán sẽ thay đổi. Cũng chính từ đó, bài toán có thể theo hai hướng: một là mở rộng ra, hai là thu hẹp đi. Bây giờ ta bỏ hẳn yếu tố này đi. Tức là “A, B có thể cùng hoặc khác phía”. Thế thì rõ ràng bài toán đã có sự thay đổi về chất đáng kể. Khi đó, tính chất bài toán sẽ khác. Ta thấy rằng, bài toán lúc này sẽ rộng hơn, phức tạp hơn. Bởi vì, xét riêng mà nói, khi bỏ thuộc tính “cùng phía” hay “khác phía” trong giả thiết của bài toán cũng đồng nghĩa với việc tăng “lượng” của bài toán lên hai trường hợp rõ ràng. Ta đi vào nghiên cứu cụ thể vấn đề bài toán bằng cách vận dụng quy luật lượng chất xem kết quả thế nào…(Tiểu luận: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật)

Bài toán 1: Cho hai điểm A, B và đường thẳng d. Tìm điểm M trên d sao cho MA+MB nhỏ nhất.

         Bài toán 2: Cho hai điểm phân biệt A, B không thuộc hai đường thẳng song song a và b. Tìm điểm M trên a, điểm N trên B sao cho AM+MN+NB nhỏ nhất.

        Bài toán 3: Cho các số dương a, b thỏa Tìm giá trị nhỏ nhất của.


Trên đây là tiểu luận môn Triết Học đề tài: Vai trò của Toán học trong sự hình thành và phát triển thế giới quan duy vật, dành cho các bạn đang làm tiểu luận môn học đại cương: còn nhiều bài mẫu tiểu luận môn học các bạn tìm kiếm trên chuyên mục nhé. 

Lưu ý: Có thể trên website không có tài liêu đúng như các bạn mong muốn để hoàn thiện bài làm hoàn toàn mới và chất lượng tốt các bạn có thể cần tới sự hỗ trợ của dịch vụ viết tiểu luận để kham khảo bảng giá và quy trình làm việc các bạn có thể trao đổi với mình qua SDT/ZALO: https://zalo.me/0932091562

DOWNLOAD FILE

Contact Me on Zalo